Evaluation of giant sacaton grasses for riparian rehabilitation (RRS4)

Unit process wetlands and riparian zones

Re-Inventing the Nation’s Urban Water Infrastructure (ReNUWIt)

Introduction
Riparian rehabilitation is becoming increasingly important to the environment in the wake of climate change. River habitats, for example in New Mexico, are at risk of becoming polluted which could cause the loss of the natural wildlife and plant life. While these riparian zones can be rehabilitated by planting many different types of plant life, some plants may not be well suited to a desert climate and may not be sustainable without large amounts of water or human assistance. This method investigates the use of beneficial grasses (e.g. to support insects and other wildlife) that can withstand drought as well as be aesthetically pleasing. It is hypothesized that these plants will also become wind barriers.

Methodology
Giant sacatons (Sporobolus Aroides) were planted on six plots at Sunland Park ReNUWIt Test-bed site. The experiment was conducted in-situ soil plot that was divided into 40 ft. by 40 ft. sections. The plots were approximately 75 ft. from the Díez Lagos irrigation drainage canal. Of the six plots, a mixture of 3 inch top layer of clinoptilolite zeolite was added to three of the plots. Nine giant sacaton grasses were planted in each of the plots; a total of 54 alkali sacatons. The plants were then irrigated well until the soil was moist so they could establish roots. Once the plants established the roots, no artificial irrigation will be applied to observe plant response to dry semi-arid climate with minimal rainfall.

Objective
The objective of this project is to setup a pilot scale experiment in the field to study the use of giant sacatons for riparian rehabilitation and wind barriers. The goal of the study is to improve our understanding of riparian restoration by introduction of native plants and their ability to survive and thrive in brackish water as well as in a desert climate. The long-term goal is to use these types of grasses for restoration of riparian zones by providing habitat wildlife and as a natural wind barrier.

Results
This Project started in January 2019. The following has been completed:
• The Giant Sacaton have established their roots and are acclimating to the environment (brackish water, EC of 1.0-1.4 us.
• The Giant Sacatons have grown to an average height of 1 ft. 3 in. and have an average diameter of about 1 ft since planting in the middle of winter.

The sacatons growth and survival will continue to be monitored and their progress recorded. Only 1 of the 54 Sacatons planted has shown some stress. Soil moisture and salinity in each of the plots are being monitored to assess adaptability of sacatons in this type of environment.

Next Steps
The following are anticipated during growing season of 2019
• Monitor soil moisture and salinity
• Analyze soil properties for macro and micro nutrients
• Monitor microclimate
• Analyze plant tissue for chlorophyll content and arsenic
• Assess plant growth and survival, and root development
• Report the results

Conclusions
Preliminary results show the giant sacaton have started to establish an indication of root establishment. The sacatons have grown considerably since they were planted on February 8, 2019. A few of the plants have shown some signs of stress but overall the sacatons seem to be adapting well. The sacatons will continue to be monitored through out the growing season of 2019 and will be evaluated for riparian rehabilitation in urban environment of arid environments.

Acknowledgements
• Drs. Nirmala Khandan (NMSU) and Pamela McLeod (Stanford University)
• ReNUWIt NSF Engineering Research Center.
• Graduate students: Juan Solis and Yusep Artola.
• Elephant Butte Irrigation District (EBID)

Research Scholar Contact Information
Carey Collins | careycol@nmsu.edu

Research conducted through the ReNUWIt Research Scholars (RRS) Program.