Microbial Fuel Cells: Looking Inside the Black Box
Erin Voss – ReNUWIt REU Participant at NMSU, Zach Stoll – Grad Student Mentor, Dr. Pei Xu – Faculty Advisor

Objectives
• Work with small-scale Microbial Fuel Cells (MFC) to determine feasibility of large-scale implementation of Microbial Fuel Cells into Wastewater Treatment Plants

Scope
• Combine biochemistry and thermodynamics to better understanding why and how Microbial Fuel Cells work
• Be able to use this understanding to engineer a Microbial Fuel Cell that can compete with traditional wastewater treatment methods

Above: Image of Small-Scale Microbial Fuel Cell
Right: Design layout for Small-Scale Microbial Fuel Cell
Microbial Fuel Cells: Looking Inside the Black Box

Major Outcomes

- Start up with a power supply yielded high cell performance (blue)
- The cathode potential (green) is constant
- All changes in cell performance are driven by the anode potential (orange)

- The anode potential is easy to measure and directly linked to the microbial metabolism
- The microbial metabolism is difficult to measure and understand
- This relationship means we can make perturbations in the fuel cell and monitor changes in metabolism via the anode potential
- We can use this method to look inside the black box and better understand how to engineer a MFC that can compete with traditional treatment practices