

Background

- The anaerobic baffled reactor (ABR) operated by the Colorado Ta School of Mines treats raw domestic wastewater at pilot-scale.
- The ABR produces a unique low-carbon, high-ammonium effluent, requiring an additional treatment process.
- Partial nitritation-anammox (PN/A) couples ammonia-oxidizing bacteria (AOB) and anaerobic ammonia oxidizing (anammox) bacteria. AOB oxidize ~50% of ammonium to nitrite. The resulting nitrite and remaining ammonium are converted primarily into nitrogen gas under anoxic conditions by anammox.

Objective

Develop a bioreactor to remove inorganic nitrogen from the unique ABR effluent to achieve wastewater treatment standards.

System Description

- PN/A was operated in a 9-liter bench-scale moving bed biofilm reactor (MBBR) (Figure 1).
- Receives anaerobically pretreated raw domestic wastewater
- Operated in sequencing batch mode, under an HRT of 24hrs
- Oxygen was supplied by continuous air flow at 100 mL/min via an air diffuser plate.
- Continuously mixed with a low-shear impeller
- Dissolved oxygen constantly monitored using a DO probe

Reducing Nitrogen Concentrations in ABR Effluent using Partial Nitritation-Anammox

Francisco Alvarez¹, Carolyn Coffey², Dr. Junko Munakata Marr² ¹Humboldt State University, ²Colorado School of Mines

Methods

able 1: Sampling plan for a typical week of data collection					
	\mathcal{M}	Т	\mathcal{W}	Th	F
NH_4^+	Inf	Inf, Eff	Inf, Eff	Inf, Eff	Eff
NO_2^{-}	Inf	Inf, Eff	Inf, Eff	Inf, Eff	Eff
NO_3^{-}	Inf	Inf, Eff	Inf, Eff	Inf, Eff	Eff
DOCa	Inf	Inf, Eff	Inf, Eff	Inf, Eff	Inf, Eff
BOD ^b			Inf	Inf, Eff	Eff
CODs/t ^c	Inf	Inf, Eff	Inf, Eff	Inf, Eff	Eff
pН	Inf	Inf, Eff	Inf, Eff	Inf, Eff	Eff
DO^d	Constant	Constant	Constant	Constant	Constant
dCH_4^{e}	Inf	Eff	Inf, Eff	Inf, Eff	Eff

^adissolved organic carbon, ^bbiological oxygen demand, ^csoluble and total chemical oxygen demand, ^ddissolved oxygen, ^edissolved methane

Figure 1: Schematic of pilot-scale PN/A reactor

Figure 2: Ammonium removal over nine individual PN/A batch treatments

Figure 3: Initial and final concentration of inorganic nitrogen over three PN/A batches, each with a 24-hr HRT.

Conclusion

- stabilized.
- decrease in total inorganic nitrogen (Figure 3).
- lacksquare

Future Work

- likely inhibiting anammox activity

Acknowledgements

- ReNUWIt \bullet
- Colorado School of Mines
- Carolyn Coffey
- Junko Munakata-Marr, PhD
- Linda Figueroa, PhD
- Pamela McLeod

Significant ammonium removal by PN/A treatment process (Figure 2). Removal increased over time as the PN/A reactor

Conversion of ammonium to nitrogen gas demonstrated by a

Evidence of undesired nitrite accumulation, potentially due to over aeration (Figure 3). Excessive nitrite can inhibit anammox.

Unexpected decrease in nitrate concentrations, suggesting heterotrophic denitrification occurred in the PN/A reactor (Figure 3), supported by decreases observed in BOD.

• Conduct a full-time course study through a batch to better understand the kinetics occurring in the PN/A reactor Investigate shift in microbial community characterizations • How does the PN/A community shift with ABR effluent? • Implement DO control to mitigate NO_2^- accumulation which is