Substrate Degradation Rate Comparison between GAC and Bulk Liquid Biomass in SAF-MBR System

Nickolas Avila^{1,3}, Chungheon Shin¹, Sebastien Tilmans², and Craig Criddle^{1,2}

¹Stanford University Department of Civil and Environmental Engineering

Staged Anaerobic Fluidized Membrane Bioreactor System (SAF-MBR)

- Consists of anaerobic fluidized bed reactor (AFBR)
 - Fed raw sewage
- AFBR feeds anaerobic fluidized membrane bioreactor (AFMBR)
- System effluent is from membrane permeate
 - Has high effluent quality (COD ≈ 20 mg/L)
- High solids retention time from biomass suspension on granular activated carbon (GAC) and size exclusion on membrane
- Produces methane, has potential to be energy positive

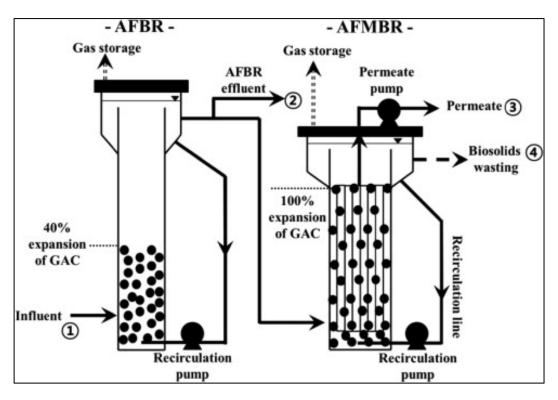


Figure 1 SAF-MRB schematic diagram

²Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt)

³Montana State University Department of Chemical and Biological Engineering

Performed degradation rate testing

- Test difference in protein (casein) and polysaccharide (cellulose) degradation rates for GAC and AFBR bulk liquid, results in Figure 2
 - Biochemical methane potential test setup, normalize to active acetoclastic methanogenic biomass
- Fit consecutive reactions model (two first order reactions), set k_2 , fit k_1 and V_{max} , see Figure 3
 - $Substrate \xrightarrow{1} Acetate \xrightarrow{2} Methane$

•
$$V_{CH_4} = V_{max} \left(1 + \frac{k_1 e^{-k_2 t} - k_2 e^{-k_1 t}}{k_2 - k_1} \right)$$

Results

- Hydrolysis rate casein > cellulose
- Hydrolysis rate bulk > GAC
 - Due to diffusion of hydrolysis enzymes out of GAC biofilm

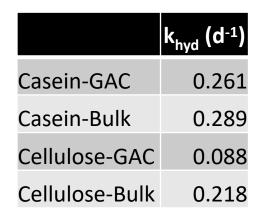


Figure 2 BMP test results

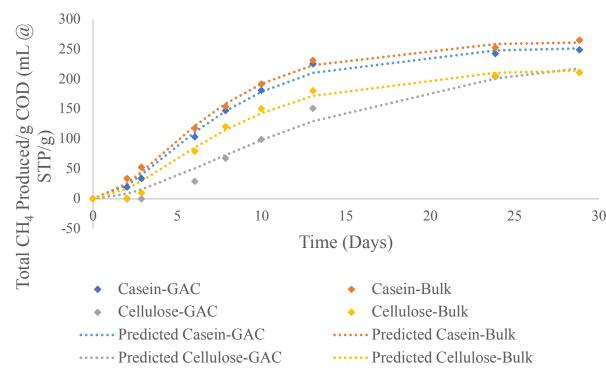


Figure 3 Consecutive reaction model fit to data