
Use of Artificial Neural Networks to Predict Water Quality Variables at a Decentralized 
Wastewater Treatment Facility  

Jacob Chicano1, Kate Newhart2, Tzahi Cath2 
1University of Connecticut, 2Colorado School of Mines 

 
Introduction: 
 As the population across the United States continues to grow, so too does the need to 
increase our nation’s wastewater treatment capacity and lower spending costs. While urban areas 
are sufficiently serviced by large-scale centralized wastewater treatment plants (WWTPs), 
decentralized facilities offer rural communities and expanding suburban areas an opportunity to 
service their wastewater close to the source, at lower cost due to reduced pumping distances. 
One drawback to these local WWTPs, however, is that their operators are not necessarily experts 
in the field of wastewater treatment1. Biochemical wastewater treatment processes, such as 
nitrification and denitrification, require contrasting operational conditions, naturally making 
treatment a complicated task. Careful monitoring and advanced understanding of these 
processes are necessary to ensure proper treatment. Consequently, decentralized WWTP 
operators require innovative operational monitoring techniques to ensure the plant is running 
properly. 
 Revolutionary advancements in artificial intelligence (AI) and machine learning make 
implementation of robust, data-driven systems, such as artificial neural networks (ANNs), at 
WWTPs as a form of system monitoring an appealing idea. ANNs offer potential to simplify data 
collection, analysis and system prognostics through the prediction of effluent quality, without 
having to run long, and sometimes hazardous, tests. Whereas sensors are prone to fouling and 
failure, ANNs are computational tools that are capable of capturing the obscure mathematical 
relationships between process variables, immune to technical failure so long as they are provided 
with reliable historical data. ANNs can be trained to learn a mathematical function relating a set 
of input data to a corresponding set of output data. The network may then be supplied with an 
input data set for which the outputs are not known, apply this learned function, and predict what 
the output is. Theoretically, this prediction can be thought of as ideal outputs under normal 
operating conditions (NOCs), and can be compared to sensor readings throughout the system. A 
large disparity between ideal and actual output values could alert operators to a potential fault in 
the system. 
 
Objectives: 
Task 1: Monitoring how much nitrate is released in wastewater effluent is a critical environmental 
issue. At all times, any monitoring scheme should be able to accurately feed back effluent nitrate 
concentration to ensure the plant is operating within federal law. Use an ANN to predict effluent 
nitrate concentration from easy-to-measure influent ammonium readings 
 
Task 2: To substitute sensor readings with ANN predictions, the error between observed and 
predicted outputs should be minimized. One method of reducing this error is to find the ANN 
architecture that yields the lowest prediction error. Optimize the structure of the ANN so that 
forecasting error is minimized 
 
Approach: 
 The complex relationships between the wastewater treatment process steps imply a highly 
nonlinear mathematical behavior of the system. As such, an ANN that can capture these nonlinear 
relationships between data sets is recommended, such as the nonlinear auto-regressive with 
exogenous inputs (NARX) network2. This network structure analyzes error between both past and 
current inputs and outputs, adjusting the weights between process variables accordingly.  



While the network itself learns how to map a set of input patterns to a set of outputs, a 
trustworthy set of data is necessary to reliably estimate the mapping function. These data were 
collected at Mines Park in Golden, CO, from the sequencing batch-membrane bioreactor (SB-
MBR) testbed, a demonstration-scale WWTP that models treatment at a decentralized WWTP. 
Between the days of April 15, 2018 and April 27, 2018, data were collected at one-minute intervals 
for a total of 16000 data points of both influent ammonium concentration and effluent nitrate 
concentration. 
 The coding language of choice to begin designing the ANN was MATLAB, due to its 
intuitive neural network toolbox that makes starting off easy for beginners. A time-series NARX 
network was developed in MATLAB, initially structured using an input layer with two neurons (for 
the reading of the two NH4

+ sensors’ data), one hidden layer with ten neurons, and an output layer 
with one neuron (NO3

- effluent concentration). Time delay was initially set to two, meaning that 
estimation of the mapping function included the two most recent estimates of the output to 
minimize error. Network training was accomplished using the Levenberg-Marquardt 
backpropagation algorithm, with a tangent sigmoid activation function in the hidden layer, and 
linear activation in the output layer. 80% of all data points supplied to the network were used to 
train the network, so the network could learn as much about the variation in the data as possible. 
The remaining 20% was split equally between validation and testing to minimize prediction error 
and test the generalizability of the network when it is supplied with new information. 
 Following the completion of training, validation and testing, the finalized network was used 
to forecast up to two days’ worth of effluent concentrations in one-minute intervals. The results 
were then averaged using an exponential weight moving average (EWMA) to relate the network’s 
prediction accuracy over a longer period of time, and still allow the newly measured value to have 
a significant impact on the updated average. 
 
Results and Discussion: 
 Minimization of 
prediction error is 
necessary to achieve 
the best forecasting 
potential possible from 
the network. An 
optimization loop was 
thus created to test the 
effect of increasing 
time delay. This loop 
created a network with 
time delay values 
ranging from 2 to 80, 
and showed that 
increasing time delay 
increased multi-step 
prediction performance 
until time delay was 
equal to 60. Increased accuracy is likely attributed to more data being used to approximate the 
mapping function. A similar loop was run to find the optimal number of hidden nodes in the hidden 
layer, with the number of nodes ranging from two to ten with twenty replicates of each. On 
average, six hidden nodes yielded the best multi-step performance.  

Figure 1. Evolution of ANN prediction accuracy with 2880 minutes (2 days) of SB-MBR 
effluent nitrate concentration at the Mines Park testbed. MSE = 0.0704 

 



 Figure 1 
compares the 
optimized network’s 
NO3

- prediction to a set 
of known targets 
associated with the 
same NH4

+ inputs. 
Visual inspection of the 
graph shows that the 
network has a difficult 
time predicting the 
magnitude of shifts in 
nitrate data, but 
captures a general 
average of the outputs.  

Figure 2 
depicts the EWMA 
taken using the data 
from Figure 1. Using an 
average that spans 240 minutes, prediction error, measured as mean square error, decreases an 
order of magnitude to 0.0037. 

Minute-by-minute predictions of effluent characteristics are seemingly difficult to obtain 
through the usage of ANNs. Poor prediction performance is likely attributed to the complex 
interactions that occur during wastewater treatment. While ammonium influent concentrations 
might be a generally good predictor of nitrate effluent concentration, a handful of other 
environmental, biological, and mechanical factors influence how much nitrate is produced and 
how much leaves the system at once. Averaging can be seen as a tool that can be used to account 
for and cancel out these influencing factors. 

  
Conclusion:  

ANN technology has difficulty developing accurate minute-by-minute predictions of 
effluent nitrate concentration given only influent ammonium concentration data, potentially due to 
some biochemical or mechanical influence that the network could not account for. However, a 
weighted moving average of the predicted and observed data shows that averaging can negate 
the effects of these influences.  

It is possible that an ANN can be used to predict average effluent quality. However, it is 
prudent to note that unless these results can be improved by means of finding a way to precisely 
approximate effluent quality at each minute, then ANN monitoring technology provides no 
practical advantage over modern sensor technology. Further research should investigate 
incorporation of other process variables into an ANN, and their effect on forecasting accuracy. 
Additionally, an ANN’s ability to predict a wastewater treatment system NOCs should be tested 
to ascertain if potential system faults can be identified before a system alarm is triggered. 
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Figure 2. Exponential weighted moving average of both target and predicted effluent 
nitrate concentrations. Each point is the average of the current data point and 239 
previous data points (with time = 0 representative of the average of the first 240 data 
points). MSE = 0.0037 
 


