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Backqground:

» Decentralized wastewater treatment plants offer the potential to increase the United
States’ water treatment capacity while simultaneously decreasing conveyance costs.

» Operators at smaller, decentralized facilities are typically not wastewater treatment
engineers. To ensure wastewater is being treated properly, operators require a greater
degree of operational supervision and guidance. To ensure operators are well-
informed about current and future wastewater treatment states, accurate and timely
predictions of water quality parameters must be made.

* In this work, an artificial neural network (ANN) is used to predict effluent water quality
of a decentralized wastewater treatment facility. The ANN is capable of ‘reading”
wastewater treatment influent quality and maps what the nitrate concentration should
be under normal operating conditions (NOC) without the need for first principals
modeling.

Obijectives:

Objective 1: Determine the optimal structure of an ANN for which influent ammonium
data is used to predict effluent nitrate concentration

Objective 2: Test multi-step prediction accuracy of an ANN used to predict effluent nitrate
concentration while system is under NOC

Barriers to Reinvention:

* Reliance on sensor technology that is variable and difficult to maintain makes
collection of reliable data difficult for water and wastewater treatment facilities

* Model-based prediction techniques are notoriously computationally and time
expensive, prone to oversimplification, and lack robustness that would allow it to
capture the dynamic nature of wastewater treatment and influent water quality

* The structuring and training of an ANN is largely a trial-and-error process, thus
development of the network is both time consuming and typically suboptimal

* No single answer exists to the question of how much data is necessary to avoid
underfitting and overfitting

Approach:

Data collection:
Ammonium sensor: Vernier Ammonium lon-Selective Electrode
Nitrate sensor: YSI IQ SensorNet NitraVis®

Influent ammonium and effluent nitrate data collected in one-minute intervals for a total
of 11 days from SB-MBR at Mines Park testbed. All data sets gathered were normalized
to zero mean and unit variance.



Approach (continued):

Network setup:
Optimal neural network set-up is a trial-and-error
process of altering a variety of variables. Thus,
methodology explained below depicts the final results,
not the process.

Platform for network development: MATLAB

Network architecture: NARX network

Number of hidden layers/nodes: 1 layer / 6 nodes

Transfer functions: tangent sigmoid (hidden layer),
linear (output layer)

Time delay: 60
% data used training, validation, testing: 80,10,10

Network learning:

Figure 1 depicts the general neural network learning
process train. Following this step, the network is ready
to be used to predict effluent nitrate concentration.

Training:
Adjust weights of network: Levenberg-Marquardt
backpropagation algorithm

Validation:

Calculates error using current weights, loops until error
is minimized

Testing:
Tests prediction accuracy of the final network

Figure 1. Neural network general learning algorithm flowchart

Results:

Optimization:

The optimal structure of the ANN is
described in the “Network setup” section of
“‘Approach”. Multiple loops were run while
varying the network properties listed. The
network with the structure described was
chosen because it, on average,
consistently yielded the lowest multi-step
prediction error.

Prediction Accuracy:

Figure 2 shows that the network has
difficultly learning how magnitude of
effluent NO; is affected by perturbations in
influent NH,* concentration, but seems to
capture a long-term average of total NOy
outputted.

An exponential weighted moving average
(EWMA, Figure 3). was created. Averaging
of data results in mean error decreasing an
order of magnitude, possibly due to
negation of the effects of short-term
mechanical or biochemical anomalies.

Future Work:
Incorporation of additional process
variables into network to improve

prediction accuracy

Investigate use of ANN soft-sensor
technology as fault identification system
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Figure 2. Neural network prediction of 2880 minutes (2 days) of SB-MBR effluent nitrate
concentration at the MP testbed
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Figure 3. Exponential weighted moving average of both target and predicted effluent nitrate
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concentrations. Each point is the average of the current data point and 239 previous data
points (with time = 0 representative of the average of the first 240 data points). While error
decreases significantly, a constant average effluent quality prediction is unrealistic due to the
transient nature of wastewater

Conclusion:

The ANN developed in this work requires that minute-by-minute prediction accuracy be improved. Averaging
of data yields a more accurate, but unrealistic, prediction. Unless prediction accuracy can be improved, there
is little reason to use ANNSs in place of classical sensor technology.




