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Introduction 

As constructed wetlands emerge as a promising nature-based solution to wastewater 
treatment, the impact of this remediation technique on these ecosystems must be monitored. 
The behavior of fish and insect larvae can be studied to assess impacts of a treatment system 
on resident biota. This project aims to better understand larval movement in order to identify 
abnormalities when they arise. We adopt the assumption that larval motility can be modeled as 
a diffusive process and is therefore described via a random walk analogy (Kiørboe, 2008). In 
addition to their motility, larvae passively diffuse due to stochastic motions in ambient water 
flow, namely turbulence and Brownian motion. Thus, the movement of larvae in turbulent water 
can be described as a series of layered diffusive processes: motility (modeled as diffusion) and 
physical particle diffusion (due to turbulence and Brownian motion). Video footage taken in 
Burns Bog Delta Nature Reserve near Vancouver, Canada was used to study larval movement. 
 
Methods 

The first method used herein is a synthetic 
stochastic process or “Monte Carlo” model, with 
which the relationship between larval track data and 
calculations of diffusivity can be explored. Random 
walk simulations of 100 particles taking 500 steps 
(n) were modeled using Python in one, two, and 
three dimensions (Nilesh, 2008). The standard 
deviation (𝜎) of the particles in the 1D simulation 
was measured every 25 steps in order to correlate 𝜎 
with n, as seen in Figure 1.  

Ordinary linear regression (ORL) was 
performed on a log-log plot of n vs. 𝜎 to obtain an 
equation relating the two variables. The best fit line, 
log(𝜎) = 𝛼 + 𝛽log(n), represents this curve of best fit 
plotted on logarithmic axes. Raising both sides of 
the equation to the exponential power gives the 
curve of best fit, 𝜎(n) = An𝛽, where A is e𝛼 (Kawwa, 
2020). Thus, the intercept term in the linear equation 
can be used to obtain the scaling factor for the curve 
of best fit, while the slope term represents the 
exponent’s value. After constants 𝛼 and 𝛽 for the 
curve of best fit were estimated, 95% confidence 
intervals were found for each constant. Rough 
proofs were outlined for finding best fit using ORL 
and calculating associated uncertainties. It is 
important to note that advection was not included 
in the model, despite its impact on particle 
dispersion in real water flow. 



The second method used herein is an exploration of image processing methods that 
allow for analysis of larval movement recorded in the field. Blurriness, low contrast, and low light 
occur often in field footage. These issues may arise due to a variety of factors, including fast 
movement of larvae, water turbidity, and limits to the footage resolution. Underwater video 
footage (29.97 fps) taken on June 22, 2018 in Burns Bog Delta Nature Reserve, BC, Canada 
was examined and swimmers (i.e., motile organisms such as larvae) were identified. Selected 
frames with sufficient image clarity and identifiable swimmers were identified. Adjacent frames 
were subtracted from one another to obtain velocities (in pixels/frame and mm/s) for the motile 
larvae and passive particles. Larval diffusivity (mm2/s) was obtained from this result. 
 
Results & Discussion 

The Monte Carlo simulation elucidated key 
relations that describe diffusive processes. 
Standard deviation (𝜎) was found to vary 
proportionally to √n, validating the canonical 
correlation. In the experiment shown in Figure 2, e𝛼 
= A = 0.83 and 𝛽 = 0.47, leading the curve of best fit 
to be 𝜎(n) = 0.83*n0.47. Again, this result agrees with 
the expected square root (or n1/2 = n0.5) relation 
between 𝜎(n) and n. 

Image processing revealed the dispersion 
velocity of the larvae to be 42 ± 14 pixels/frame, or 
13 ± 4.3 mm/s, while the passive particles moved at 12 ± 0.90 pixels/frame or 3.9 ± 0.28 mm/s. 
Previous dispersion velocity estimates in the literature range from 1-10 mm/s and 3-30 mm/s, 
validating this project’s results (James et al., 2019; Largier, 2003). The dispersion velocity 
translated to a diffusivity value of about 130 mm2/s for the larvae. Challenges with larvae 
swimming out of focus in the footage prompt further work on experimental setup.  
 
Conclusion 

Studying larval movement in-situ confronts many difficulties due to image quality issues 
and complex underlying fluid dynamics. This project aimed to arrive at a preliminary 
understanding of the fundamental components used to analyze larval movement in turbulent 
estuarine systems. Future studies that use more advanced techniques such as machine 
learning and automatic image cross-correlation to identify and track particles are recommended. 
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