

# COMPARISON OF HIGH-WATER RECOVERY METHODS IN REVERSE OSMOSIS (RO) OF BRACKISH WATER USING RO MODELING SOFTWARE

Morgan Sommers<sup>1</sup>, Dr. Pei Xu<sup>2</sup>, Juliano Penteado de Almeida<sup>2</sup>, Elizabethtown College<sup>1</sup>, New Mexico State University<sup>2</sup>



#### Background

With population increase and growing economies there is a higher demand for fresh water, but our supply is threatened by climate change, water waste, and pollution. With freshwater reserve depletion it causes a need for an alternative water source to sustain future generations. Therefore, scientists have been exploring methods such as desalination to meet the water demand. Desalination processes such as Reverse Osmosis (RO) use alternative water sources such as brackish water and sea water by removing salts and minerals from the water to make it potable.

#### Problem

#### Membranes

RO uses high pressure to force water through a semi-permeable membrane with small pores filtering salts, minerals, and organics to produce clean drinkable water. This subjects the membranes and spacers to fouling and scaling: the accumulation of foreign materials from feed water on the membrane surface and/or on the feed spacer causing operational problems.

Anti-Scalant/Foulant

This calls for a need of a chemical pre-treatment to change the feed characteristics of the water. Chemicals anti-scalants/foulants create an added cost, health risk, and environmental impact to the RO process.

#### Proposed Solution

An electromagnetic field (EMF) serves as an alternative non-chemical pre-treatment. The inducer produces an electric signal of  $\pm 150$  kHz causing clusters to form, The clusters precipitate out of the solution which do not adhere to the membranes or spacers. The induction of the signal prevents scale and biofilm from accumulating on membranes and piping and gradually removes existing deposits. EMF can also address algae and bacteria by using the process of osmosis forcing water in the bacteria causing it to burst.

Without EMF

EMF

### With EMF



Source: Hvdroflow-usa.com

Figure 1. EMF comparison

### Objectives

- 1. Compare energy consumption of chemical vs electromagnetic field (EMF) pre-treatment
- 2. Compare water recovery and cost of conventional RO to HRRO using RO software

# RO Software System Design/Methods



Concentrate Concentrate Figure 2. System design with chemical (a,b) and EMF (c,d) pre-treatment

These four systems compared energy consumption. RO Models Tai were run on ROSA, Avista CI, and IMS Design for a baseline. Water constituent data was consistent across all software Par programs; acquired from the 2019 Bureau of Reclamation report Cal analyzing the brackish ground water supply in Santa Teresa, Ma New Mexico. All water parameters were collected from Camino Sod Pot Real Regional Utility Authority (CRRUA) Well 19 and a functional unit of 1 MGD of permeate was consistent across Ch software. The system was then designed based off the Nit capabilities of the software. The full energy consumption was Sili TD then calculated based off of software values and literature Bor values. Sulf

| ble 1. Water constituent data |                |            |  |  |  |  |  |
|-------------------------------|----------------|------------|--|--|--|--|--|
| CRUUA Well 19                 |                |            |  |  |  |  |  |
| ameter                        | Unit Avg Value |            |  |  |  |  |  |
|                               | pH Unit        | 7.65       |  |  |  |  |  |
| cium                          | mg/L           | 72.95      |  |  |  |  |  |
| gnesium                       | mg/L           | 12.71      |  |  |  |  |  |
| lium                          | mg/L           | 262        |  |  |  |  |  |
| assium                        | mg/L           | 8.85       |  |  |  |  |  |
| enic                          | mg/L           | 0.0534     |  |  |  |  |  |
| oride                         | mg/L           | 333        |  |  |  |  |  |
| rate                          | mg/L           | 6.98       |  |  |  |  |  |
| ca                            | mg/L           | 40.2       |  |  |  |  |  |
| 5                             | mg/L           | ~1200-1500 |  |  |  |  |  |
| on                            | mg/L           | 0.469      |  |  |  |  |  |
| fate                          | mg/L           | 393        |  |  |  |  |  |
| ale                           | IIIg/L         | 272        |  |  |  |  |  |

#### Results

Table 2. Comparison of the design of high recovery RO systems using software

| High Recovery RO Software Comparison        |                       |         |                       |                         |           |                       |           |  |  |  |
|---------------------------------------------|-----------------------|---------|-----------------------|-------------------------|-----------|-----------------------|-----------|--|--|--|
| Software                                    | ROSA                  |         | ROSA                  | IMS Design              |           | Avista                |           |  |  |  |
| System                                      | Conventional          |         | HRRO                  | Conventional **         |           | Conventional (RRO)    |           |  |  |  |
| Feed Flow (gpm)                             | 1390                  |         | 772.22                | 1275                    |           | 952                   |           |  |  |  |
| Stage                                       | Stage 1               | Stage 2 | Stage 1               | Stage 1                 | Stage 2   | Stage 1               | Stage 2   |  |  |  |
| Feed TDS (mg/L)                             | 1567                  |         | 1613                  | 1572                    |           | 1425                  |           |  |  |  |
| RO Water Recovery                           | 81%                   |         | 90%                   | 90%                     |           | 88%                   |           |  |  |  |
| Overall Water Recovery                      | 85%                   |         | 92%                   | 93%                     |           | *                     |           |  |  |  |
| Membrane Type                               | XLE-440               | XLE-440 | BW30XFRLE-400/34      | ESPA2-MAX               | ESPA2-MAX | ESPA2-MAX             | ESPA2-MAX |  |  |  |
| Membrane Area (ft <sup>2</sup> )            | 440                   | 440     | 400                   | 440                     | 440       | 440                   | 440       |  |  |  |
| Spacer Thickness (mil)                      | 28                    | 28      | 37                    | 28                      | 28        | 28                    | 28        |  |  |  |
| Elements x Pressure Ves                     | 8 x 18                | 8 x 8   | 5 x 42                | 8 x 12                  | 8 x 4     | 8 x 12                | 8 x 4     |  |  |  |
| pH Adjustment                               | Require pH correction |         | Require pH correction | H2SO4 dosing (109 mg/L) |           | Require pH correction |           |  |  |  |
| Permeate Flow (gpm)                         | 621.5                 | 72.8    | 694.3                 | 563.3                   | 131.8     | *                     | *         |  |  |  |
| Permeate TDS (mg/L)                         | 131                   |         | 140                   | 52                      |           | *                     | *         |  |  |  |
| Blending Flow (gpm)                         | 291                   |         | 292                   | 290                     |           | *                     | *         |  |  |  |
| * Information not provided by software      |                       |         |                       |                         |           |                       |           |  |  |  |
| ** System uses energy recovery device (ERD) |                       |         |                       |                         |           |                       |           |  |  |  |

- Four systems were run: ROSA (conventional), ROSA (HRRO) with concentrate recycle, IMS Design (conventional) and Avista (conventional).
- Each system had blending to bring the TDS to 500 mg/L to meet the secondary drinking water standard.

- IMS Design conventional method achieved a water recovery of 93% with the addition of an energy recovery device while ROSA with the HRRO function achieved a water recovery of 92% (Table 1).
- Energy Consumption was then calculated by literature and the software values provided a baseline (Figure 2)
- EMF data was provided by the supplier to estimate power consumption. This was then converted to energy/year and greenhouse gas emissions (Figure 3).

#### Table 3. Power comparison of RO software

| Total Energy Consumption    |              |              |              |                 |  |  |  |
|-----------------------------|--------------|--------------|--------------|-----------------|--|--|--|
| Software                    | IMS Design   | EMF          | ROSA         | ROSA (HRRO+EMF) |  |  |  |
| Process                     | Energy (kWh) | Energy (kWh) | Energy (kWh) | Energy (kWh)    |  |  |  |
| Feed Pump                   |              | 42.2         | 43.3         | 56.2            |  |  |  |
| RO Pump                     | 59.5         | 45.2         | 43.2         |                 |  |  |  |
| EDR                         |              | *            | *            | *               |  |  |  |
| pH Correction Dosing Pump   | 0.1          | *            | 0.1          | *               |  |  |  |
| Anti-scalant Dosing Pump    | 0.1          | *            | 0.1          | *               |  |  |  |
| Ultrafiltration (UF)        | *            | 13.0         | *            | 16.9            |  |  |  |
| Hydropath device            | *            | 0.06         | *            | 0.1             |  |  |  |
| Total                       | 59.7         | 56.2         | 43.4         | 73.2            |  |  |  |
| * Not included in treatment |              |              |              |                 |  |  |  |



#### Environmental Impact Comparison

Figure 3. Energy and greenhouse gas emissions comparison

## Conclusions

- EMF can achieve high water recovery without the use of chemicals and be implemented with both a conventional and HRRO system
- Less chemical usage is safer, cheaper and reduces the negative environmental impacts on water treatment
- Further research can help enhance this technology and implement on a larger scale